Bioengineered Silicon Diatoms: Adding Photonic Features to a Nanostructured Semiconductive Material for Biomolecular Sensing
نویسندگان
چکیده
Native diatoms made of amorphous silica are first converted into silicon structures via magnesiothermic process, preserving the original shape: electron force microscopy analysis performed on silicon-converted diatoms demonstrates their semiconductor behavior. Wet surface chemical treatments are then performed in order to enhance the photoluminescence emission from the resulting silicon diatoms and, at the same time, to allow the immobilization of biological probes, namely proteins and antibodies, via silanization. We demonstrate that light emission from semiconductive silicon diatoms can be used for antibody-antigen recognition, endorsing this material as optoelectronic transducer.
منابع مشابه
Label-Free Optical Sensing on Hybrid Plasmonic-Nanobiosilica Platforms
Diatoms are single-celled algaes that make photonic-crystal-like silica shells or frustules with hierarchical micro& nano-scale features consisting of two-dimensional periodic pores. In this paper, we present an innovative label-free optical sensor based on a biological-plasmonic hybrid nanostructure by self-assembling silver (Ag) nanoparticles into diatom frustules. The photonic-crystal-like d...
متن کاملSynthesis of Zinc Oxide Nanostructured Thin Film by Sol- Gel Method and Evaluation of Gas Sensing Properties
Ethanol (C2H6O) sensitivity of zinc oxide (ZnO) thin film has been studied in present work. Semiconductor thin films of zinc oxide (ZnO) were deposited onto alkali-free glass substrates by the sol–gel method and dip-coating technique. The ZnO sol was synthesized by dissolving zinc acetate dehydrate in ethanol, and then adding Tetra ethanol-amine. The as-coated films were preheated at 150 ºC fo...
متن کاملPolymer replicas of photonic porous silicon for sensing and drug delivery applications.
Elaborate one-dimensional photonic crystals are constructed from a variety of organic and biopolymers, which can be dissolved or melted, by templating the solution-cast or injection-molded materials in porous silicon or porous silicon dioxide multilayer (rugate dielectric mirror) structures. After the removal of the template by chemical dissolution, the polymer castings replicate the photonic f...
متن کاملBiosensing using Porous Silicon Photonic Bandgap Structures
Photonic bandgap (PBG) structures have remarkable optical properties that can be exploited for biosensing applications. We describe the fabrication of 1-D PBG biosensors using porous silicon. The optical properties of porous silicon PBGs are sensitive to small changes of refractive index in the porous layers, which makes them a good sensing platform capable of detecting binding of the target mo...
متن کاملPhotonic Crystal Sensors Based on Porous Silicon
Porous silicon has been established as an excellent sensing platform for the optical detection of hazardous chemicals and biomolecular interactions such as DNA hybridization, antigen/antibody binding, and enzymatic reactions. Its porous nature provides a high surface area within a small volume, which can be easily controlled by changing the pore sizes. As the porosity and consequently the refra...
متن کامل